The Rotational-Vibrational Spectrum of HCl
ثبت نشده
چکیده
Introduction In this experiment you will examine the energetics of vibrational and rotational motion in the diatomic molecule HCl. The experiment involves detecting transitions between different molecular vibrational and rotational levels brought about by the absorption of quanta of electromagnetic radiation (photons) in the infrared region of the spectrum. The introductory discussion consists of three parts: (1) vibrational and rotational motion and energy quantization, (2) the influence of molecular rotation on vibrational energy levels (and vice versa), and (3) the intensities of rotational transitions.
منابع مشابه
Imaging the state-specific vibrational predissociation of the hydrogen chloride-water hydrogen-bonded dimer.
The state-to-state vibrational predissociation dynamics of the hydrogen-bonded HCl-H(2)O dimer were studied following excitation of the HCl stretch of the dimer. Velocity-map imaging and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the HCl stretch of the dimer, HCl fragments were detect...
متن کاملImaging H2O photofragments in the predissociation of the HCl-H2O hydrogen-bonded dimer.
The state-to-state vibrational predissociation (VP) dynamics of the hydrogen-bonded HCl-H(2)O dimer was studied following excitation of the dimer's HCl stretch by detecting the H(2)O fragment. Velocity map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the HCl stretch of...
متن کاملImaging study of vibrational predissociation of the HCl-acetylene dimer: pair-correlated distributions.
The state-to-state predissociation dynamics of the HCl-acetylene dimer were studied following excitation in the asymmetric C-H (asym-CH) stretch and the HCl stretch. Velocity map imaging (VMI) and resonance enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Different vibrational predissociation mechanisms were observed for the two excite...
متن کاملInternal energy of HCl upon photolysis of 2-chloropropene at 193 nm investigated with time-resolved Fourier-transform spectroscopy and quasiclassical trajectories.
Following photodissociation of 2-chloropropene (H(2)CCClCH(3)) at 193 nm, vibration-rotationally resolved emission spectra of HCl (upsilon < or = 6) in the spectral region of 1900-2900 cm(-1) were recorded with a step-scan time-resolved Fourier-transform spectrometer. All vibrational levels show a small low-J component corresponding to approximately 400 K and a major high-J component correspond...
متن کاملThe Spectrum of Hot Water: Rotational Transitions and Difference Bands in the (020), (100), and (001) Vibrational States
Analysis of the hot H2 16O spectrum, presented by Polyansky et al. (1996, J. Mol. Spectrosc. 176, 305-315), is extended to higher vibrational states. Three hundred thirty mainly strong lines are assigned to pure rotational transitions in the (100), (001), and (020) vibrational states. These lines, which involve significantly higher rotational energy levels than were known previously, are assign...
متن کامل